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Abstract

Language and culture endow humans with access to conceptual information that far exceeds

any which could be accessed by a non-human animal. Yet, it is possible that, even without lan-

guage or specific experiences, non-human animals represent and infer some aspects of similarity

relations between objects in the same way as humans. Here, we show that monkeys’ discrimina-

tion sensitivity when identifying images of animals is predicted by established measures of seman-

tic similarity derived from human conceptual judgments. We used metrics from computer vision

and computational neuroscience to show that monkeys’ and humans’ performance cannot be

explained by low-level visual similarity alone. The results demonstrate that at least some of the

underlying structure of object representations in humans is shared with non-human primates, at an

abstract level that extends beyond low-level visual similarity. Because the monkeys had no experi-

ence with the objects we tested, the results suggest that monkeys and humans share a primitive

representation of object similarity that is independent of formal knowledge and cultural experi-

ence, and likely derived from common evolutionary constraints on object representation.

Keywords: Object representation; Evolution; Non-human primate; Homology; Representational

structure

1. Introduction

Human object knowledge is structured by semantic similarity—the relations among

objects are defined by their perceptual and conceptual properties such as form, function,

behavior, and environment (e.g., Collins & Loftus, 1975; Cree & McRae, 2003; Martin,

2007, 2009; Warrington & McCarthy, 1987). Some of the conceptual properties that humans
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represent about objects are observable (e.g., has a beak), whereas others are inferred (e.g., is

alive); relatedly, some conceptual properties can be observed directly and represented non-

verbally (e.g., flies), whereas others are most often acquired indirectly through verbal trans-

missions (e.g., “lives in Antarctica”). Semantic information also can be inferred from per-

ceptual features—humans can combine perception and prior knowledge to make predictions

about the likely functional, behavioral, and thematic properties of a novel object (Carey,

1982; Keil, 1981). Semantic representations are useful because they allow humans to make

inferences about novel objects that they have never experienced. The origin of human

semantic structure, and its possible evolutionary foundation in primate cognition, is a cur-

rent focus of enquiry in child development, psychology, and neuroscience (Humphreys,

Price, & Riddoch, 1999; Keil, 1981; Markman, 1992; Sloutsky & Fisher, 2004).

Representations of objects could be similar between humans and non-human primates

only superficially, in terms of the low-level perceptual representations, or they could also be

similar at more abstract perceptual levels of representation. The question of whether humans

and non-human primates have similar representations of similarity relations between objects

is important for understanding which aspects of human object representations are evolution-

arily derived, and which aspects critically depend on human-specific abilities, such as culture

and language. Human conceptual reasoning far exceeds the conceptual reasoning abilities of

non-human animals (Penn, Holyoak, & Povinelli, 2008). But, as in other domains, such as

numerical cognition (Brannon & Terrace, 1998; Cantlon & Brannon, 2006; Gallistel & Gel-

man, 1992) and social cognition (Spelke, Bernier, & Skerry, 2013; Tomasello, Melis, Tennie,

Wyman, & Herrmann, 2012), it could be the case that a common set of predictable attributes

underlies the basic structure of object knowledge in humans and non-human primates (Keil,

1981; New, Cosmides, & Tooby, 2007; Phillips & Santos, 2007).

Cognitive research with non-human animals indicates that they can form basic cate-

gories. For instance, a variety of non-human animal species can be trained to sort visual

images into categories, such as trees, water, leaf patterns, particular people, flowers, cars,

and even painting styles (Cerella, 1979; Herrnstein & Loveland, 1964; Herrnstein, Love-

land, & Cable, 1976; Wasserman, Kiedinger, & Bhatt, 1988; Watanabe, Sakamoto, &

Wakita, 1995). Some aspects of non-human animals’ categorization abilities have human-

like qualities, including discrimination at the superordinate and basic levels (Bovet &

Vauclair, 2001; Fabre-Thorpe, Richard, & Thorpe, 1998; Sands, Lincoln, & Wright,

1982; Vogels, 1999), with rapid category discrimination and generalization to novel

exemplars (Fabre-Thorpe et al., 1998; Neiworth & Wright, 1994; Vauclair & Fagot,

1996). Additionally, non-human primates exhibit some signatures of abstract representa-

tion when identifying objects according to their superordinate categories. For example,

macaque monkeys accurately categorize animals (vs. non-animals) and show similar con-

gruency effects to humans when an object (animal or man-made) matches its background

(natural or man-made) (Fize, Cauchoix, & Fabre-Thorpe, 2011). However, the degree to

which the similarity space of object representations is related to that of non-human pri-

mates remains unknown.

One reason to propose that human object knowledge shares structural attributes with

non-human primate cognition is that there are numerous homologies between the neural
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systems of humans and non-human primates due to millions of years of shared evolution-

ary history. In the visual system, anatomical and functional similarities in the human and

non-human primate brain extend from early visual regions through to high-level visual

areas that process whole objects (Kravitz, Saleem, Baker, & Mishkin, 2011; Kravitz,

Saleem, Baker, Ungerleider, & Mishkin, 2013; Kriegeskorte, Mur, Ruff, et al., 2008;

Logothetis, Guggenberger, Peled, & Pauls, 1999; Tsao, Freiwald, Knutsen, Mandeville, &

Tootell, 2003; Van Essen & Gallant, 1994; Wandell, 1999). A growing body of electro-

physiological and neuroimaging research provides further evidence of similar neural rep-

resentations of objects in monkeys and humans (Gil-da-Costa et al., 2004). Kriegeskorte,

Mur, Ruff, et al. (2008) directly compared monkey and human inferior temporal (IT)

responses to the same visual object stimuli and found that the patterns of neural responses

in humans and monkeys could be used to group the stimuli into similarly organized taxo-

nomic structures. However, despite evidence of neural homologies between humans and

non-human primates, the question of whether humans and non-human primates represent

information similarly during judgments about objects is debated (Fize et al., 2011; Gil-

da-Costa et al., 2004; Mur et al., 2013).

In order to bridge existing neurobiological research on monkeys’ representations of visual

objects with cognitive science research on human cognition, we need behavioral evidence that

monkeys’ cognitive judgments of objects are predicted by and share representational structure

with human representations. One way to directly test this is to use human-derived measures of

the semantic distances among objects to test whether those human-based measures predict

monkeys’ discrimination performance. It is known that human-derived measures of semantic

distance among objects reflect both abstract perceptual and formal knowledge, and critically,

depend on humans’ rich knowledge of the abstract properties of objects, including thematic,

behavioral, and functional properties (Cree & McRae, 2003). Although previous research

demonstrates that animals can learn object categories and discriminate objects independently

of global visual scene statistics, it does not show whether animals possess representations of

categories with similar semantic structure to abstract human categories.

Here, we directly compared humans’ and monkeys’ representations of object similarity

for the category “animals” in a non-verbal matching task. We found patterns of similarity

between humans and monkey representational spaces. In order to identify the sources of

those similarities between monkeys’ and humans’ representations, we compared metrics

of human semantic similarity with several metrics of visual similarity to test explanations

of animals’ discrimination sensitivity, including metrics from a computational model of

low-level visual processing in visual cortex (V1) and higher level whole object processing

in IT cortex. If monkeys’ representations of objects are predominantly driven by simple

visual representations, then their discriminations will be predicted by metrics of low-level

visual similarity alone. However, if monkeys’ representations of objects are more

abstract, then their discriminations will be predicted by metrics of IT representation and

human semantic similarity indices, over and above any contributions of visual similarity.

Evidence for abstract conceptual representations in monkeys would implicate a role for

evolutionary constraints on the organization of category representations, at a higher level

of abstraction than has been demonstrated previously.
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2. Experimental procedures

2.1. Match-to-sample task—Line drawings

This task tested the representational similarity space of object representations, using

line drawings as stimuli, in monkeys and humans.

2.1.1. Subjects
Monkey subjects were four rhesus macaques (Macaca mulatta; two female). Two mon-

keys (D and R) were water-restricted and received juice rewards in the task. The other

two monkeys (C and H) had access to water ad libitum and received treat pellets and

M&M rewards in the task. All monkeys were familiar with the match-to-sample para-

digm, but not with the stimuli used in this experiment. Each monkey completed 12 ses-

sions of 90 trials each (approximately 45 min per session). All procedures were approved

by the University of Rochester IACUC.

Human participants were 10 undergraduates (8 female) recruited from the University

of Rochester. All participants gave written informed consent and were compensated $8/h

for their participation. Each participant completed 1 session of 450 trials (approximately

45 min). All procedures were approved by the University of Rochester Research Subjects

Review Board (RSRB).

2.1.2. Stimuli
Forty-five unique pairs of exemplars from the category “animals” were tested (i.e., all

possible pairings of 10 objects). The monkeys had never seen these stimuli before, and

the data presented here represent their entire experience with these stimuli. The same

black-and-white line drawings of animals were used in the match-to-sample task and in

the picture–word agreement task (Fig. 1A).

2.1.3. Procedure
The match-to-sample task was conducted using touchscreen computers and was

identical for monkeys and humans (and for line drawings, photographs, and novel

objects—see below). Each trial began with a green screen with a white rectangle in

the lower right-hand corner. To initiate a trial, subjects touched the white rectangle.

After a 1-s delay, a picture stimulus appeared randomly at one of six positions on the

screen. The subject touched the stimulus to verify s/he was attending to the task. The

stimulus disappeared and, after a 2-s delay, two picture stimuli appeared randomly at

two of six possible positions on the screen. One of these stimuli was a match to the

previously presented stimulus, while the other was not. If the subject touched the

matching stimulus, a chime sound played, the screen turned pink for the 2-s inter-trial

interval, and juice or pellets were delivered (monkeys only). If the subject touched

the non-matching stimulus, or failed to respond in 8 s, a buzzer sounded and the

screen turned black for a 5-s timeout before the initiation of the 2-s inter-trial

interval.
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2.2. Match-to-sample task—Grayscale photographs

This task tested the representational similarity space of object representations using

photographs as stimuli, in monkeys and humans.

2.2.1. Subjects
Monkey subjects were two rhesus macaques (Macaca mulatta; 1 female), both of which

had previously participated in the match-to-sample task with line drawings (R and H). Each

monkey completed 12 sessions of 90 trials each (approximately 45 min per session).

Human participants were 12 undergraduates (8 female) recruited from the University

of Rochester, who had not participated in the task with animal line drawings. All partici-

pants gave written informed consent and were compensated $8/h for their participation.

Each participant completed one session of 450 trials (approximately 45 min).

2.2.2. Stimuli
Stimuli were grayscale photographs of the same animal concepts tested with line draw-

ings; 45 unique pairs of 10 animals were tested with this novel image set (Fig. 1B).

2.2.3. Procedure
All aspects of the procedure with this novel image set were exactly the same as in the

experiment with line drawings.

2.3. Match-to-sample task—Novel geometric objects

This task tested the representational similarity space of simple geometric objects, using
photographs as stimuli, in monkeys only.

2.3.1. Subjects
Monkey subjects were two rhesus macaques (Macaca mulatta; 1 female), both of

which had previously participated in the match-to-sample task with animal line drawings

Fig. 1. Picture stimuli. (A) Black-and-white line drawings used in the animal line drawing match-to-sample

task and the picture–word agreement task. (B) Grayscale photos used in the animal photograph match-to-sam-

ple task. (C) Grayscale photos of the geometric stimuli.
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and animal photographs (R and H). Each monkey completed 12 sessions of 90 trials each

(approximately 45 min per session).

2.3.2. Stimuli
Stimuli were 10 grayscale images of geometric objects composed of two to four parts,

where each part was a simple, primitive shape such as a cube or cylinder (Fig. 1C).

Forty-five unique pairs of 10 geometric objects were tested.

2.3.3. Procedure
All aspects of the procedure were exactly the same as in the experiments with line

drawings and grayscale photographs, with the only difference that images of novel objects

were used as stimuli.

2.4. Picture–word agreement task

This task tested the representational similarity space of object representations, using

words as stimuli, in humans only.

2.4.1. Subjects
Human participants were 17 undergraduates (12 female) recruited from the University

of Rochester. All participants gave written informed consent and were compensated $8/h

for their participation. Each participant completed 1,800 trials (approximately 3 h).

2.4.2. Stimuli
The same 45 unique pairings among the 10 animal concepts were tested as were tested

in the Match-to-Sample tasks, and the same black-and-white line drawings of animals

were used as had been used in the Match-to-Sample task (Fig. 1A). Word stimuli were

the corresponding animal names in all capital letters and white font. Half of the trials

were “yes” (i.e., match) trials and half of the trials were “no” (i.e., non-match) trials.

Only response times and accuracy from “no” trials were analyzed, as the semantic dis-

tance in the match trials was always zero.

2.4.3. Procedure
The picture–word agreement task was conducted using a computer monitor and a

response box. On each trial, a picture stimulus appeared in the middle of a black screen,

with a word below it. The participant was instructed to press the left button on the

response box if the picture and word represented the same concept, and the right button

if the picture and word represented different concepts.

2.5. Analysis

Individual differences in speed-accuracy tradeoffs can affect whether semantic distance

effects appear in subjects’ accuracy or in their response time. There can be large individual
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differences in speed-accuracy tradeoffs among humans (Phillips & Rabbit, 1995), and even

larger differences between primate species. For example, on discrimination tasks monkeys

tend to respond rapidly with a moderate amount of error, whereas humans respond slowly

with few errors (e.g., Cantlon & Brannon, 2006). Since semantic distance effects can be

manifested in both response time and accuracy, we combined those two measures into one

measure, which we refer to as “comparison cost.” This comparison cost measure, also

called “inverse efficiency” (Townsend & Ashby, 1978, 1983), has been used in previous

studies of semantic processing and discrimination (Aydelott, Baer-Henney, Trzaskowski,

Leech, & Dick, 2012; Wei et al., 2012) and removes confounding individual differences

in speed-accuracy tradeoff from analyses. First, for each subject (human or monkey), we

calculated the median response time on correct trials for each image pair (or picture–word
pair in the picture–word agreement task), after excluding outliers (�2 SD; 4% of correct

trials). We then calculated the mean of the medians for all subjects, for each image pair.

Finally, we divided the mean response time for each stimulus pair by the overall accuracy

for that image pair, yielding a comparison cost score. Thus, higher “comparison costs”

correspond to longer response times and lower accuracy.

We validated the comparison cost measure by comparing monkey and human perfor-

mance using two additional measures. First, we calculated the Spearman correlation

between monkey accuracy and human response time. Second, we converted response time

and error rate (1 � accuracy) to z-scores and then averaged them. We then calculated the

Spearman correlation between the means of the z-scored response time and accuracy for

monkeys and humans.

To support averaging data across individual monkeys, we calculated the internal con-

sistency of subjects’ performance using omega (McDonald, 1999). Omega was 0.74

across individual monkey comparison costs for the line drawing and photo tasks, an

acceptable level of internal consistency for averaging the data.

2.6. Semantic similarity measure

Semantic distance was defined using classic indices from human research on concep-

tual knowledge (Cree & McRae, 2003; McRae, Cree, Seidenberg, & McNorgan, 2005).

McRae et al. (2005) quantified semantic distances among a large set (n = 541) of con-

cepts by asking human subjects to list properties for each object. Subjects were encour-

aged to list a variety of types of properties, including perceptual, functional, and

encyclopedic. The production frequency of every property generated by the subjects was

calculated for each concept, creating a vector of production frequencies for each concept.

Semantic distances among the concepts were then calculated using the cosine of property

production frequency vectors in a pairwise fashion. Substantial research indicates that

these ratings accurately reflect abstract human concepts (Maki & Buchanan, 2008;

Mirman, 2011; Mirman & Magnuson, 2008, 2009) and capture substantial variance in

response times during both verbal and non-verbal tasks (e.g., Caramazza, Hersh, & Torg-

erson, 1976; Mahon, Costa, Peterson, Vargas, & Caramazza, 2007; Rips, Shoben, &

Smith, 1973; Vigliocco, Vinson, Lewis, & Garrett, 2004).
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To confirm that this property list-based measure reflects the semantic relationships

between the animal stimuli, we compared it to explicit semantic similarity judgments

obtained from adult participants. We asked 16 human participants to rate the pairwise

similarity between the animals used in our experiments (presented as words) on a 7-point

Likert scale, with 1 being “not similar at all” and 7 being “extremely similar.” We then

used the median score for each pair (as recommended by Jamieson, 2004) in further anal-

yses. This measure of semantic similarity was significantly correlated with the property

list-based measure of semantic similarity from Cree & McRae (Spearman’s r = .71,

p < .01), supporting our use of the property-based measure.

2.7. Visual similarity measures

Correlation matrices of all the visual similarity measures for animal line drawings

(Table S1), animal photos (Table S2), and novel objects (Table S3) are included in the

Supporting Information.

2.7.1. Affine similarity
This measure quantifies visual similarity by calculating how much one image must be

transformed in order to match a second image. It is based on Belongie et al.’s (2002)

“affine cost” measure, which is a measure of the difference between 100 arbitrarily cho-

sen points on one image and “corresponding” points (as determined by an affine plane

transformation model) on another image. The cost is the Euclidean distance between the

points on the first image and the points on the second image (Belongie et al., 2002). This

was carried out 100 times for each pairing of images, and the average cost (across the

100 samplings) was used to represent the affine cost. The signs of these values were

changed (values were multiplied by �1) so that higher values correspond to greater simi-

larity, hence “affine similarity.”

2.7.2. Shape context similarity
This measure is similar to affine similarity, with the addition that the context of each

point was taken into account when choosing the “corresponding” point (shape context

cost; Belongie et al., 2002). This was carried out 100 times for each pairing of images,

and the average cost (across the 100 samplings) was used to represent the shape context

cost. The sign of these values were changed (values were multiplied by �1) so that

higher values correspond to greater similarity. Since it was unknown whether the addition

of the shape context would improve the model’s representation of the visual similarity of

our stimuli, we included both the affine and shape context similarity measures in our

analyses.

2.7.3. Pixel correlation
This visual similarity measure was calculated by simply finding the Pearson linear cor-

relation between pixel values of two images (e.g., Kriegeskorte, Mur, Ruff, et al., 2008).
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2.7.4. Sum of squared differences in pixel values-inverted
The sum of squared differences in pixel values is frequently used for object matching

in computer vision (e.g., Crowley, 1997; Grill-Spector, Kourtzi, & Kanwisher, 2001;

Kanade & Okutomi, 1994). The differences between the values of the pixels in one image

and the values of the corresponding pixels in a second image were calculated and

squared. Then all the values were added to yield one value. The sign of this value was

multiplied by �1 so that higher values correspond to greater similarity, hence “inverted.”

2.7.5. Binary pixel correlation
For the animal photo and novel object stimuli, the grayscale pixel values were con-

verted into binary values using Otsu’s method (Otsu, 1979), and then the Pearson linear

correlation between these pixel values of two images was found.

2.7.6. Binary sum of squared differences in pixel values-inverted
For the animal photo and novel object stimuli, the binary pixel values found using

Otsu’s method (Otsu, 1979), were used to calculate the sum of squared differences in

pixel values-inverted using the method described above.

2.7.7. Correlation of radon transformed images
Wade and Tyler (2005; see Kriegeskorte, Mur, & Bandettini, 2008, for details) sug-

gested that the representation of an image in the lateral occipital complex (which is

implicated in the perception and representation of objects (Snodgrass & Vanderwart,

1980)) can be modeled by the radon transformation of that image. This measure was cal-

culated by Pearson correlating the radon transform matrices of two images (found using

the radon function in MATLAB; e.g., Mur et al., 2013).

2.7.8. V1(HMAX-S1C1) and IT (HMAX-C2)
The V1 (HMAX-S1C1) and IT (HMAX-C2) visual similarity measures were calcu-

lated, using the HMAX model (Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio,

2007; Serre, Wolf, & Poggio, 2005), which is a hierarchical, feed-forward neural network

model of object recognition in the visual system. The first two layers of HMAX simulate

simple and complex cells of primary visual cortex. The simple units’ (S1) responses are

determined by passing the input image through Gabor filters. These responses serve as

inputs to the complex units (C1), which respond to certain orientations of edges and are

moderately tolerant to the shift and size of the inputs. The outputs of these layers are then

put through a second set of simple and complex units (S2 and C2), which model the rep-

resentation of the stimuli in IT cortex in terms of sets of features. S2 compares patches

of the outputs of C1 to prototype patches, which have been determined by processing a

set of training images through the C1 level. Finally, C2 extracts features over various

positions and sizes, modeling the shift- and size-tolerant cells in IT. There is disagree-

ment about the extent to which the C2 units represent IT cells (e.g., Khaligh-Razavi &

Kriegeskorte, 2014); we therefore frequently refer to these visual similarity measures by

both the model layers and the brain regions these layers purport to represent.
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We used the model parameters described in Serre, Oliva, et al. (2007) and Serre et al.

(2005) and the prototype patches trained from a set of natural images (e.g., Kriegeskorte,

Mur, Ruff, et al., 2008). The prototype patches and HMAX model were downloaded from

the Center for Biological & Computational Learning website (http://cbcl.mit.edu/softwa

re-datasets/standardmodel/index.html).

To calculate the V1 (HMAX-S1C1) visual similarity measure, the outputs of S1 and

C1 were reshaped and concatenated to form one long vector for each image (e.g.,

Kriegeskorte, Mur, Ruff, et al., 2008). We then calculated the pairwise Pearson correla-

tions between vectors, yielding a VI visual similarity measure for each pair of stimuli.

The IT (HMAX-C2) visual similarity measure was calculated in the same way as the V1

measure, using the outputs of C2. These metrics allow us to test the role of low-level

visual feature similarity (V1) and whole object, abstract perceptual similarity (IT) in the

monkeys’ and humans’ judgments.

3. Results

3.1. Match-to-sample task with animal stimuli

Monkeys and humans completed a match-to-sample task in which they discriminated

images of animals. The task required subjects to choose a stimulus from two options that

matched a sample stimulus that had just been presented. One choice option was an identi-

cal match and the other was a within-category foil (i.e., another animal). The semantic

distance between the foil and the target was varied across trials. We used 10 animals

(i.e., 45 unique pairs) from the larger database of Cree and McRae (2003) in this study.

In order to familiarize monkeys with the task, monkeys were trained to perform a

match-to-sample task with an independent set of simple shapes and images. Once mon-

keys understood the matching task (>75% accuracy), they were tested on the critical stim-

uli. Subjects had no experience with the images used in this study prior to this

experiment. In the first study, monkeys and humans performed the match-to-sample task

over black-and-white line drawings of animals (Snodgrass & Vanderwart, 1980), as

shown in Fig. 1A. Humans and monkeys performed significantly above chance on the

task (p < .01; Monkey: 75%, SD = 2%; Human: 99%, SD = 0.5%) and with rapid

response times (Median RTs: Monkey = 700 ms, SD = 365 ms; Human = 583 ms,

SD = 249 ms). Because more variability in performance was captured by accuracy than

response time in monkeys, and the reverse for humans, we put the data from monkeys

and humans onto the same scale by calculating a composite performance measure: com-

parison cost (RT/accuracy), also called “inverse efficiency” (Townsend & Ashby, 1978,

1983). This performance measure is commonly used in the field of visual cognition (Gof-

faux, Hault, Michel, Vuong, & Rossion, 2005; Jacques & Rossion, 2007; Joassin, Mau-

rage, Campanella, & Bruyer, 2006; Kennett, Eimer, Spence, & Driver, 2001; Murphy &

Klein, 1998). The comparison cost was calculated for each stimulus pairing for each sub-

ject, in order to test for effects of semantic distance on subjects’ responses and compare
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groups. Performance in monkeys was similar regardless of which stimulus of the pair was

the target (Spearman’s r = .44; p < .01), so we collapsed data across the 45 unique stim-

ulus pairs. Both monkeys and humans showed a relation between the human-derived

semantic distance metrics and their ability to make object judgments (Human: Spear-

man’s r = .35, p < .05; Monkey: Spearman’s r = .42, p < .01; see Fig. 2 for representa-

tional similarity matrices).

Additionally, the pattern of comparison cost across stimulus pairs was highly similar

between humans and monkeys (Spearman’s r = .86, p < .01; Fig. 3). We found the same

results when we compared monkey and human performance by calculating the correlation

between monkey accuracy and human RT (Spearman’s r = �.77; p < .01), and the corre-

lation between the mean of z-scored error rate and RT (Spearman’s r = .86; p < .01; see

Section 2).

Finally, we examined whether the similarity between human and monkey performance

could be due to the particular properties of the images we used (e.g., one image could be

very distinctive from all the others, potentially driving the significant correlation between

monkey and human performance). We calculated the marginal total for each image by

adding together the comparison costs for each target-distractor pair that included that

image. To account for these marginal totals in our measure of performance, we conducted

a linear regression predicting comparison cost score from the marginal totals for each

image in the pair. The residuals from this multiple regression reflect performance while

Fig. 2. Representational similarity matrices for performance on animal line drawing stimulus pairs. Shade

darkness increases with standardized comparison cost score. (A) Human (n = 10) similarity matrix. (B)

Monkey (n = 4) similarity matrix.
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accounting for the particular properties of the images we used. We obtained residuals for

monkey and human performance separately and then correlated them to see if perfor-

mance was still similar across species. Even when accounting for the marginal totals of

the images, monkey, and human performance were still significantly related (Spearman’s

r = .72; p < .01). This result indicates that the representational similarity matrices within

the category “animals” are similar for monkeys and humans.

We tested whether the relation between semantic distance and performance in monkeys

and humans could be explained by dimensions of low-level visual similarity. In order to

provide a robust test of the possible contribution of visual dimensions, we tested five

measures of visual similarity: Affine Similarity, Shape Context Similarity, Pixel Correla-

tion, Pixel Sum of Squared Differences-inverted (Pixel SSD-inv), and Radon Correlation

(see Section 2 for details). Of these five measures, only one (Pixel SSD-inv) showed a

significant relation with humans’ and monkeys’ performance (Pixel SSD-inv: Human:

Spearman’s r = .54, p < .01; Monkey: r = .69, p < .01; all other ps = .28–1.0; alphas

corrected for multiple comparisons; see Table S4). We thus conducted a multiple regres-

sion analysis to determine the relative contributions of semantic similarity and Pixel

SSD-inv to performance. For both humans and monkeys, semantic similarity and Pixel

SSD-inv each explained a significant amount of the variance in performance (Human:

semantic similarity sr2 = .124, p < .01; Pixel SSD-inv sr2 = .255, p < .01; Monkey:

semantic similarity sr2 = .167, p < .01; Pixel SSD-inv sr2 = .379, p < .01). That is, even

when accounting for Pixel SSD-inv, the relation between semantic similarity and

performance remained significant. This result indicates that human and non-human pri-

mate representations of objects scale according to the same variables, one of which is

human-defined semantic similarity.

Fig. 3. Human comparison cost scores are plotted against monkey comparison cost scores for each target-

distractor animal line drawing pair. Spearman’s r = .86, p < .01.
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In a second experiment, we tested whether the same patterns would be obtained when

the stimuli were grayscale photographs (Fig. 1B). In this new stimulus set, the animals

were presented as novel photographs. Both groups performed above chance with pho-

tographs (Monkey: 84%, SD = 10%; Human: 99%, SD = 0.5%) and with rapid response

times (Median RTs: Monkey = 550 ms, SD = 270 ms; Human = 550 ms, SD = 182 ms).

Critically, as was observed with the line drawing stimuli, both monkeys and humans

showed a relation between human-derived semantic similarity metrics and comparison

cost across stimulus pairings (Human: Spearman’s r = .31, p < .05; Monkey: Spearman’s

r = .42, p < .01; see Fig. 4 for representational similarity matrices). Moreover, the degree

of comparison cost across stimulus pairs was again highly correlated between monkeys

and humans, implicating common scaling of semantic distance among the animal stimuli

in humans and monkeys (Spearman’s r = .39, p < .01; see Fig. 5). We again found simi-

lar results when we correlated monkey accuracy and human RT (Spearman’s r = �.34;

p < .05), the average of z-scored error rate and RT (Spearman’s r = .33; p < .05), and

the marginal totals (Spearman’s r = .26; p = .08), comparable to the results from the line

drawing task.

As was done for line drawings, we then examined the possible contribution of visual

dimensions of similarity to task performance. In addition to the five visual measures

examined previously with the animal line drawing stimuli, we also converted the grays-

cale pixel values to binary values and then used correlations and sum of squared

Fig. 4. Representational similarity matrices for performance on animal photograph stimulus pairs. Shade

darkness increases with standardized comparison cost score. (A) Human (n = 10) similarity matrix. (B) Mon-

key (n = 2) similarity matrix.
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differences to compare the images. Only Binary Pixel SSD-inv was significantly corre-

lated with monkeys’ performance after correction for multiple comparisons (Spearman’s

r = .42, p < .05; all other ps = .12–1.0; see Table S4). We conducted a multiple regres-

sion analysis to determine the relative contributions of semantic similarity and Binary

Pixel SSD-inv to monkeys’ performance. Only semantic similarity explained a significant

amount of the variance in performance (semantic similarity sr2 = .086, p < .05; Binary

Pixel SSD-inv sr2 = .026, p = .26).

In summary, low-level visual similarity is not as good a metric for predicting monkey

or human object discrimination as semantic similarity across line drawings and pho-

tographs.

As a more integrated analysis of the roles of low-level visual representations and

abstract perceptual representations in performance, we tested the behavioral data against

the performance of a computational model of visual object processing: HMAX (Riesenhu-

ber & Poggio, 1999b; Serre, Oliva, et al., 2007; Serre, Wolf, Bileschi, Riesenhuber, &

Poggio, 2007; Serre et al., 2005). The HMAX model represents low-level visual (V1) and

abstract whole object representations (IT) as separate stages of processing within a hierar-

chical and feed-forward architecture. Thus, we can test whether monkeys’ and humans’

comparison cost patterns across the animal stimuli were more similar to the model’s esti-

mation of V1 (HMAX-S1C1) or IT (HMAX-C2) representational similarity. To do this,

we calculated the similarity between all pairs of images from our stimulus set using the

simulated visual processes corresponding to V1 and IT in the HMAX architecture (see

Section 2 for details).

Monkey performance on both line drawings and grayscale photos was significantly pre-

dicted by the IT outputs (line drawings: Spearman’s r = .54, p < .01; grayscale photos:

r = .38, p < .01), but not V1 outputs (line drawings: r = .25, p = .10; grayscale photos:

Fig. 5. Human comparison cost scores are plotted against monkey comparison cost scores for each target-

distractor animal photograph pair. Spearman’s r = .39, p < .01.
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r = .24, p = .11). This suggests that monkeys’ confusion among animal pairings was dri-

ven by abstract, whole object perceptual similarity rather than low-level feature-based

similarity.

We then tested whether semantic similarity explained unique variance in discrimination

performance when accounting for variance explained by the IT outputs of the HMAX

model. To that end, we conducted an ANCOVA over monkeys’ and humans’ performance

on the line drawings and grayscale photographs. We examined the effects of species

(monkey or human), stimulus type (line drawing or photograph), semantic similarity, IT-

based similarity, and V1-based similarity. The analysis revealed independent effects of

semantic similarity and IT-based similarity on performance but no relation between per-

formance and the V1-based similarity (semantic similarity: F(1, 168) = 18.96, p < .001;

IT model: F(1, 168) = 7.31, p < .01; V1 model: F(1, 168) = 1.99, p = .16). There was

also an effect of species (F(1, 168) = 265.21, p < .001) because humans had overall

lower comparison costs than monkeys. Follow-up regression analyses showed that seman-

tic similarity still explained variance in performance, after accounting for the contribution

of the IT-based similarity within each species (Monkeys: semantic similarity: sr2 = .05,

p < .01; IT model: sr2 = .02, p < .05; Humans: semantic similarity: sr2 = .07, p < .01;

IT model: sr2 = .09, p < .01).

Together, these results confirm that high-level similarities among objects significantly

influence the judgments of monkeys and humans, above and beyond the similarity of

visual representations.

3.2. Match-to-sample task with novel object stimuli

Overall, the data indicate that human-defined semantic distance is a strong and inde-

pendent predictor of monkeys’ discriminations of animal images beyond established mea-

sures of visual similarity: Affine Similarity, Shape Context Similarity, Pixel Correlation,

Pixel Sum of Squared Differences-inverted (Pixel SSD-inv), Correlation of Radon Trans-

formed Images (Radon Correlation), Otsu’s visual similarity, and V1 (HMAX-S1C1) and

IT (HMAX-C2) components. An important positive control would thus be to demonstrate

that these indices of visual similarity are able to capture monkey performance when the

stimuli do not invoke abstract object representations. To that end, we tested monkeys on

a match-to-sample task, using novel geometric stimuli. The stimuli were grayscale render-

ings of artificial objects (details in Section 2—see Fig. 1C). Monkeys performed the task

well above chance (p < .01, 76% accuracy, SD = 1%), and with rapid response times

(Median RT = 617 ms, SD = 330 ms). Comparison cost was calculated, using the same

method as for the animal line drawing and photograph tasks. Comparison costs across the

object pairings were highly correlated with nearly all of the visual similarity measures:

Pixel Correlation (Spearman’s r = .58, p < .01), Pixel SSD-inv (Spearman’s r = .58,

p < 0.01), Radon Correlation (Spearman’s r = .57, p < .01), Binary Pixel Correlation

(Spearman’s r = .60, p < .01), and Binary Pixel SSD-inv (Spearman’s r = .57, p < .01)

(corrected for multiple comparisons; see Table S4 for complete correlation results). As

with the previous tasks, we tested performance against the V1 and IT levels of the
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HMAX model of visual object processing. We used a multiple regression to determine

the unique contribution of the V1 and IT models to monkeys’ performance. The V1

model explained unique variance in performance (sr2 = .17, p < .01), but the IT model

did not (sr2 = .02, p = .31). These results show that when monkeys make judgments over

novel object stimuli that have little semantic value, visual similarity largely predicts their

performance. This result stands in contrast to the monkeys’ performance with animal

stimuli, which showed strong relations to semantic similarity and IT-based similarity, but

only isolated and weak relations with lower level visual similarity. These data serve the

important function of demonstrating that the measures of visual similarity we used have

the necessary sensitivity to explain monkeys’ performance, when their performance is

principally driven by an analysis of low-level visual information.

3.3. Picture–word agreement task with animal stimuli

In both the line drawing and grayscale image versions of the matching task, we

observed that humans’ and monkeys’ discrimination abilities were correlated across stim-

ulus pairs. This suggests similar scaling of objects from the category “animals” in humans

and monkeys. In order to confirm that the object representations that humans used in this

task are representative of the abstract representations that humans invoke in verbal tasks,

we tested humans on a picture–word agreement task with the same stimuli tested in the

first two experiments. A new group of human subjects was given a task in which the ani-

mal line drawings (Fig. 1A) were paired with written animal names. Subjects reported

whether the picture and word represented the same or a different animal. Human subjects’

comparison cost scores were calculated from the non-match trials (overall error

rate = 3%). Importantly, human performance across these picture–word animal pairs was

related to monkeys’ performance across the same animal pairs from the line drawing task

as measured by comparison cost (Spearman’s r = .28, p = .06; Pearson’s r = .46,

p < .01) and the correlation between monkey accuracy and human RT (Spearman’s

r = �.29; p < .05). This indicates that even when human subjects are judging objects

using abstract verbal stimuli, their representations are scaled similarly to those of non-

human primates.

4. Discussion

There has been substantial research indicating homologies between humans and mon-

keys in the neural systems underlying visual processing. However, there has been limited

research linking those known neurobiological homologies to homologies in cognition and

behavior. It is important to show representational similarities behaviorally because only

the animals’ behavior shows how they use object information to make judgments. Here,

we show across three datasets (line drawings, photographs, and words) that within-cate-

gory semantic scaling for the category “animals” is highly similar between monkeys and

humans.
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Human-derived measures of the semantic similarity and whole-object similarity

(HMAX IT-based) predicted monkeys’ and humans’ discrimination of animals across two

experiments: one with line drawings and another with photographs. We further showed

that the relation between human-derived measures of semantic similarity and discrimina-

tion performance could not be explained purely by simple visual similarity among the

stimuli (Affine Similarity, Pixel Similarity, Radon transform, V1-based, etc.). In contrast,

simple visual similarity did predict monkeys’ performance when the task was performed

over artificial geometric objects. These data provide evidence of common influences of

whole object and semantic similarity in the “animal” representations of humans and non-

human primates. This is surprising because human concepts of “animals” draw on encyclo-

pedic and formal knowledge made possible by language, and which is unavailable to non-

humans. Moreover, the monkeys in this study are captive and have no experience with the

animals pictured in the stimuli. Our findings indicate that information from the animal

images provides humans and animals with a common representational space accounted for

by whole object similarity and non-verbal semantic knowledge. Research on object repre-

sentation in IT cortex, the most abstract stage in the object recognition pathway, supports

a representational space based on whole object similarity. For example, some IT neurons

respond selectively and invariantly to complex shapes or even hands or faces (Desimone,

Albright, Gross, & Bruce, 1984; Gross, Rocha-Miranda, & Bender, 1972). Since the mon-

keys have no direct or encyclopedic knowledge of the animals in the stimuli, any semantic

knowledge would have to be extrapolated or inferred from prior experience with other

objects and the target object’s perceptual features like shape and composition.

Although we examined the relation between task performance and many measures of

low-level visual similarity, additional low-level measures (e.g., a silhouette model) should

be examined in future work. Additionally, there is disagreement about the extent to which

the HMAX model used here represents cells in IT cortex. Future work should include

visual similarity measures based on alternative representations of IT cortex, such as deep

learning models like CAFFE (Khaligh-Razavi & Kriegeskorte, 2014). Regardless of how

well the HMAX model represents IT, the model’s output represents images as sets of fea-

tures, in a manner tolerant to shifts and size differences. Our findings that monkey and

human performances with animal stimuli were related to similarity based on this more

abstract representation of the stimuli, rather than measures of low-level visual similarity,

support our conclusion that monkeys and humans represent these animal stimuli at a level

of perceptual or categorical abstraction that goes beyond low-level visual properties.

It is perhaps surprising that the measures of low-level visual similarity among the ani-

mal stimuli were, overall, weak predictors of monkey performance. Important in this con-

text is the positive control experiment demonstrating the efficacy of those measures for

predicting monkey performance when the monkeys were making discriminations over

geometric (i.e., meaningless) stimuli. Those data indicate that the types of representations

that drove performance when the stimuli were images of animals (high-level perceptual)

were of a fundamentally different nature than the representations that drove performance

when the stimuli were novel geometric objects (low-level visual). The implication is that

the animal stimuli are represented at a more “meaningful,” abstract perceptual or
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categorical level compared to the arbitrary geometric stimuli. It is unclear what caused

the monkeys to analyze these stimuli differently. The novel geometric stimuli are visually

quite different from the animal stimuli, so the monkeys’ different treatment of those stim-

uli could be related to visual feature differences between the stimulus categories. Differ-

ent levels of analysis for the animal stimuli versus geometric shapes could be triggered

by either the greater semantic content in the animal stimuli or the salient, simple visual

properties of the geometric stimuli.

Although our data establish a fundamental similarity in the object representations of

humans and non-human primates, the precise nature of the abstract representations that

monkeys accessed during the task remains to be determined. One possibility is that mon-

keys and humans have similar biases for weighting core object features to determine their

subjective similarity relations. Resolution of this issue is important not only for determin-

ing the nature of abstract representations in primates but also for understanding the infor-

mal, non-experiential, and non-verbal basis of human semantic structure. The fact that

na€ıve monkeys’ judgments of animal stimuli were highly correlated with human judgments

of the same stimuli (in both verbal and non-verbal tasks) raises the possibility that humans

recruit a more primitive form of object representation than would be expected from the

formal and language-based knowledge that is available to them. This possibility is sup-

ported by research on geometric shape processing showing that humans process shape

information at different depths depending on whether the stimuli are presented verbally or

pictorially (Edwards, Boyer, Bell, & Sturz, 2016; Sturz, Edwards, & Boyer, 2014). The

human ability to access a primitive form of object representation that is similar to the rep-

resentations of non-human primates would be predicted by evolutionary constraints on

human object perception (Dehaene & Cohen, 2007; Geary, 2005; Mahon & Caramazza,

2011; New et al., 2007; Orians & Heerwagen, 1992; Santos & Caramazza, 2002; Spelke

& Kinzler, 2007). The idea is that humans retain a primitive system of object representa-

tion, common to non-human primates, that is exapted by modern humans to aid in the

acquisition of evolutionarily more recent formal and cultural knowledge.

Together, our results show that high-level “semantic” similarities among objects signif-

icantly influence the judgments of monkeys and humans, above and beyond the similarity

of low-level visual features. The shared representations of monkeys and humans do not

depend on direct knowledge of or experience with the objects since the monkeys had

none. Instead, the common metric of representational scaling we have reported between

humans and monkeys implicates a key role for evolutionary constraints in the organiza-

tion of human object knowledge.
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